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ABSTRACT Recent advances in DNA sequencing techniques have made it possible to monitor genomes in great detail over time.
This improvement provides an opportunity for us to study natural selection based on time serial samples of genomes while accounting
for genetic recombination effect and local linkage information. Such time series genomic data allow for more accurate estimation
of population genetic parameters and hypothesis testing on the recent action of natural selection. In this work, we develop a
novel Bayesian statistical framework for inferring natural selection at a pair of linked loci by capitalising on the temporal aspect of
DNA data with the additional flexibility of modeling the sampled chromosomes that contain unknown alleles. Our approach is built on
a hidden Markov model where the underlying process is a two-locus Wright-Fisher diffusion with selection, which enables us to
explicitly model genetic recombination and local linkage. The posterior probability distribution for selection coefficients is computed
by applying the particle marginal Metropolis-Hastings algorithm, which allows us to efficiently calculate the likelihood. We evaluate
the performance of our Bayesian inference procedure through extensive simulations, showing that our approach can deliver accurate
estimates of selection coefficients, and the addition of genetic recombination and local linkage brings about significant improvement
in the inference of natural selection. We also illustrate the utility of our method on real data with an application to ancient DNA
data associated with white spotting patterns in horses.
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NATURAL selection is a fundamental evolutionary process
that maintains function and drives adaptation, thereby

altering patterns of diversity at the genetic level. Methods for
detecting and quantifying natural selection have important
applications such as identifying the genetic basis of diseases
and understanding the molecular basis of adaptation. There
has been a long line of theoretical and experimental research
devoted to modeling and inferring natural selection, and the
vast majority of earlier analyses are based on allele frequency
data obtained at a single time point that requires unrealistic

assumptions of ancestral demography and selective regimes
(see Bank et al. 2014, for a review). With advances in DNA
sequencing technologies, an ever-increasing amount of allele
frequency data sampled at multiple time points are becoming
available. Such time series genetic data can arise from exper-
imental evolution (e.g., Burke et al. 2010; Orozco-terWengel
et al. 2012; Lang et al. 2013; Wiser et al. 2013), viral/phage
populations (e.g., Wichman et al. 1999, 2005; Holder and
Bull 2001; Bollback and Huelsenbeck 2007), or ancient
DNA (aDNA) (e.g., Hummel et al. 2005; Ludwig et al. 2009;
Orlando et al. 2013; Mathieson et al. 2015). Temporally
spaced samples provide much more valuable information re-
garding natural selection since expected changes in allele
frequencies over time are closely related to the strength of
natural selection acting on the population. One can therefore
expect time series allele frequency data to improve our ability
to estimate selection coefficients and test hypotheses regard-
ing natural selection.
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There has been a growing literature on the statistical in-
ference of natural selection from time series data of allele
frequencies over the past decade (e.g., Bollback et al. 2008;
Malaspinas et al. 2012; Mathieson and McVean 2013; Feder
et al. 2014; Foll et al. 2014, 2015; Lacerda and Seoighe 2014;
Steinrücken et al. 2014; Terhorst et al., 2015; Ferrer-
Admetlla et al. 2016; Schraiber et al. 2016; Shim et al.
2016; He et al. 2019; Paris et al. 2019), reviewed in Bank
et al. (2014) and Malaspinas (2016). A common method to
analyzing time series allele frequency data are based on the
hidden Markov model (HMM) framework of Williamson and
Slatkin (1999), where the underlying population is assumed
to evolve under the Wright-Fisher model introduced by
Fisher (1922) and Wright (1931), and the observations are
modeled through independent binomial sampling from the
underlying population at each given time point (see Tataru
et al. 2017, for a review of the statistical inference in the
Wright-Fisher model using allele frequency data). However,
such approaches can become computationally infeasible
for large populations because they require a prohibitively
large amount of computation and storage for the calcula-
tion of the likelihood. Most existing HMM-based methods
are therefore built on either the diffusion approximation
of the Wright-Fisher model (e.g., Bollback et al. 2008;
Malaspinas et al. 2012; Steinrücken et al. 2014; Ferrer-
Admetlla et al. 2016; Schraiber et al. 2016; He et al. 2019)
or the moment-based approximation of the Wright-Fisher
model (e.g., Feder et al. 2014; Lacerda and Seoighe 2014;
Terhorst et al. 2015; Paris et al. 2019). Such approximations
enable efficient integration over all possible allele frequency
trajectories of the underlying population, thereby allowing
the likelihood computation to be completed in a reasonable
amount of time.

The recent advent of high-throughput sequencing technol-
ogies has made it possible to monitor genomes in great detail
over time. This provides an opportunity for detecting and
estimating natural selection at multiple linked loci from time
series data of allele frequencies while taking the process of
genetic recombination and the information of local linkage
into account. Properly accounting for genetic recombination
and local linkage can be expected to provide more precise
estimates for the selection coefficient and more accurate
hypothesis testing on the recent action of natural selection
since genetic recombination may either reinforce or oppose
changes in allele frequencies caused by natural selection
according to the levels of linkage disequilibrium (He et al.
2020). However, with the exception of Terhorst et al. (2015),
all existing methods built on the Wright-Fisher model for in-
ferring natural selection from time series allele frequency
data are limited to either a single locus (e.g., Bollback et al.
2008; Malaspinas et al. 2012; Steinrücken et al. 2014;
Schraiber et al. 2016; He et al. 2019) ormultiple independent
loci (e.g., Foll et al. 2014, 2015; Ferrer-Admetlla et al. 2016;
Shim et al. 2016; Paris et al. 2019), i.e., genetic recombina-
tion effect and local linkage information are ignored in these
approaches. The exception among these methods, Terhorst

et al. (2015), extended a moment-based approximation of
the Wright-Fisher model introduced by Feder et al. (2014)
to the case of multiple linked loci with an application to the
pooled sequencing (Pool-Seq) data from evolve-and-rese-
quence (E&R) experiments, where the allele frequency tran-
sition between two consecutive sampling time points is
modeled deterministically, with added Gaussian noise.

In the present work, we propose a novel HMM-based
method for Bayesian inference of natural selection at two
linked loci from time series data of allele frequencies while
accounting for the process of genetic recombination, thereby
incorporating the information on local linkage. Our key in-
novation is that a diffusion approximation to the Wright-
Fisher model of the stochastic evolutionary dynamics under
natural selection at two linked loci is used as the hidden
Markov process to characterize the changes in the haplotype
frequencies of the underlying population over time, which
enables us to explicitlymodel genetic recombination and local
linkage. The diffusion approximation we use in our approach
allows us to avoid the restriction that the allele frequency
trajectory of the underlying population remains far away from
allele fixation or loss, which was imposed by the Gaussian
approximation used in Terhorst et al. (2015). Our posterior
computation is carried out with the particle marginal Metrop-
olis-Hastings (PMMH) algorithm developed by Andrieu et al.
(2010), which enables us to efficiently calculate the likeli-
hood. Also, our method can handle sampled chromosomes
with unknown alleles, which is common in aDNA data due to
postmortem damage. In addition, our method can be readily
extended to model a range of complex evolutionary scenarios
like nonconstant demographic histories.

We evaluate the performance of our Bayesian inference
procedure through extensive simulations. We show that our
method enables efficient and accurate estimation of selection
coefficients from time series genetic data, regardless ofwhether
sampled chromosomes contain unknown alleles or not. We
present two scenarios where existing single-locus methods fail
todeliverpreciseestimates forselectioncoefficientswhereasour
approach still works well, especially when the loci are tightly
linked. This shows the efficacy of our method in modeling
genetic recombination and local linkage. Finally, we apply
our Bayesian inference procedure to analyze the aDNA data
associated with white spotting patterns in horses from
Wutke et al. (2016) and find that, in horses, there is no
evidence showing that the tobiano pattern is positively
selected but strong evidence of the sabino pattern being
negatively selected.

Materials and Methods

In this section, we begin with a short review of the Wright-
Fisher diffusion for two linked loci evolving subject to natural
selection over time, and thendescribe our Bayesian procedure
for the inferenceofnatural selectionat the two linked loci from
temporally spaced samples, e.g., how to set up the HMM
framework and how to compute the posterior probability
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distribution for the population genetic quantities of interest
with Markov chain Monte Carlo (MCMC) techniques.

Wright-Fisher diffusion

Consider a diploid population of randomlymating individuals
at two linked loci A and B evolving under natural selection
according to the two-locus Wright-Fisher model with selec-
tion (see, e.g., He et al. 2017), for which we assume discrete
time and nonoverlapping generations. At each locus, there
are two possible allele types, labeled A1, A2 and B1, B2, re-
spectively, resulting in four possible haplotypes A1B1, A1B2,
A2B1, and A2B2, labeled haplotypes 1, 2, 3, and 4, respec-
tively. We attach symbols A1 and B1 to the mutant alleles,
which are assumed to arise only once in the population and
be positively selected once it exists, and we attach symbols
A2 and B2 to the ancestral alleles, which are assumed to
originally exist in the population.

We incorporate viability selection into the population dy-
namics andassume that the viability isfixed from the time that
the mutant allele was created in the population and is only
determined by the genotype at each single locus. More spe-
cifically, we assume that the relative viabilities of the 16 pos-
sible (ordered) genotypes at the two loci are determined
multiplicatively from the relative viabilities at individual loci,
and the relative viabilities of the three possible genotypes at
each single locus, e.g., genotypesA1A1,A1A2, andA2A2 at a
given locus A, are taken to be 1, 12hAsA, and 12 sA, re-
spectively, where sA 2 ½0; 1� is the selection coefficient
and hA 2 ½0; 1� is the dominance parameter. For example,
the relative viability of the A1B2=A2B2 genotype is
ð12hAsAÞð12 sBÞ. We let r 2 ½0; 0:5� be the recombination
rate of the two loci on the same chromosome (i.e., the frac-
tion of recombinant offspring showing a crossover between
the two loci). We assume that the population size is fixed to
be N diploid individuals for all time.

Two-locus Wright-Fisher diffusion with selection: We con-
sider a scaling limit of the Wright-Fisher model, where the
unit of time is rescaled by 2N. The scaled selection coeffi-
cients aA ¼ 2NsA and aB ¼ 2NsB, and the scaled recombi-
nation rate r = 4Nr are kept constant while the population
size N is taken to infinity. As the population size approaches
infinity, the haplotype frequency trajectories follow a
standard diffusion limit of the two-locus Wright-Fisher
model with selection (see, e.g., He et al. 2020), called
the two-locus Wright-Fisher diffusion with selection.
The Wright-Fisher diffusion has already been successfully
applied in the inference of natural selection from time
series allele frequency data. The partial differential equa-
tion (PDE) satisfied by the transition probability density
function of the Wright-Fisher diffusion was used in e.g.,
Bollback et al. (2008), Steinrücken et al. (2014), He et al.
(2019). In this work, as used in e.g., Schraiber et al.
(2016), we characterize the Wright-Fisher diffusion as
the solution of the stochastic differential equation (SDE)
instead.

We let Xi(t) denote the frequency of haplotype i in
the population at time t for i ¼ 1; 2; 3; 4, and be the
frequencies of the four possible haplotypes in the
population by X(t), which evolves in the state space (i.e., a
three-simplex)

VX ¼
(
x 2 ½0; 1�4 :

X4
i¼1

xi ¼ 1

)
;

and satisfies the SDE in the following form

dXðtÞ ¼ mðXðtÞÞdt þ nðXðtÞÞdWðtÞ; t$ t0 (1)

with initial condition X(t0) = x0. In Equation 1, the drift term
m(x) is a four-dimensional vector being

m1ðxÞ ¼ aAx1ðx3 þ x4Þ½ðx1 þ x2ÞhA þ ðx3 þ x4Þð12 hAÞ�
                            þ aBx1ðx2 þ x4Þ½ðx1 þ x3ÞhB þ ðx2 þ x4Þð12 hBÞ�2 r

2
ðx1x42 x2x3Þ

m2ðxÞ ¼ aAx2ðx3 þ x4Þ½ðx1 þ x2ÞhA þ ðx3 þ x4Þð12 hAÞ�
                            2aBx2ðx1 þ x3Þ½ðx1 þ x3ÞhB þ ðx2 þ x4Þð12hBÞ� þ r

2
ðx1x42 x2x3Þ

m3ðxÞ ¼ 2aAx3ðx1 þ x2Þ½ðx1 þ x2ÞhA þ ðx3 þ x4Þð12 hAÞ�
                            þ aBx3ðx2 þ x4Þ½ðx1 þ x3ÞhB þ ðx2 þ x4Þð12 hBÞ� þ r

2
ðx1x4 2 x2x3Þ

m4ðxÞ ¼ 2aAx4ðx1 þ x2Þ½ðx1 þ x2ÞhA þ ðx3 þ x4Þð12 hAÞ�
                            2aBx4ðx1 þ x3Þ½ðx1 þ x3ÞhB þ ðx2 þ x4Þð12hBÞ�2 r

2
ðx1x42 x2x3Þ;

(2)
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the diffusion term n(x) is a four by three matrix satisfying

nðxÞnðxÞ⊺ ¼ SðxÞ

¼

0
BB@

x1ð12 x1Þ 2x1x2 2x1x3 2x1x4
2x2x1 x2ð12 x2Þ 2x2x3 2x2x4
2x3x1 2x3x2 x3ð12 x3Þ 2x3x4
2x4x1 2x4x2 2x4x3 x4ð12 x4Þ

1
CCA;

(3)

andW (t) is a three-dimensional standard Brownian motion.
The term x1x42 x2x3 in Equation 2 is ameasure of the linkage
disequilibrium between the A and B loci introduced by
Lewontin and Kojima (1960), which quantifies the nonran-
dom association of the alleles at the two loci.

Forward-in-time simulation of the Wright-Fisher diffu-
sion: To obtain a numerical solution of theWright-Fisher SDE
in Equation 1, we need to compute the diffusion term n(x)
which we have to perform at each time step in most existing
numerical simulation schemes. The diffusion term n(x) can
be analytically derived with the Cholesky decomposition
(Sato 1976), which, however, explodes at the boundaries.
There exist other matrix decompositions capable of comput-
ing the diffusion term n(x) such as spectral decomposition,
which are valid for positive semidefinite matrices, typically at
the expense of either additional numerical errors and com-
putational costs, or limitations in applicability to the infini-
tesimal covariance matrix S(x) of the form in Equation 3.

Following He et al. (2020), we reformulate the Wright-
Fisher SDE in the following form

dXðtÞ ¼ mðXðtÞÞdt þ sðXðtÞÞdWðtÞ; t$ t0 (4)

with initial condition X(t0) = x0, where the diffusion term
s(x) can be explicitly written down as

and W(t) is a six-dimensional standard Brownian motion.
Combining Equations 3 and 5, we have

sðxÞsðxÞ⊺ ¼ SðxÞ ¼ nðxÞnðxÞ⊺;

which implies that the twoWright-Fisher SDE’s have the same
infinitesimal generator

L ¼
X4
i¼1

miðxÞ
@

@xi
þ 1
2

X4
i¼1

X4
j¼1

SijðxÞ @2

@xi@xj
;

thus having the same weak solution. This guarantees that we
can achieve the solution of theWright-Fisher SDE of the form
in Equation 1 by numerically solving the Wright-Fisher SDE

of the form in Equation 4, which enables us to avoid bound-
ary issues and reduce computational costs.

There exist a number of numerical simulation schemes
for SDEs [see Kloeden and Platen (1992) for an excellent
introduction]. The numerical approach we adopt in this
work is the commonly used Euler-Maruyama scheme,
one of the most popular numerical methods for SDEs in
practice due to its high efficiency and low complexity. More
specifically, we divide each generation into L subintervals
by setting Dt ¼ 1=ð2NLÞ; and then the Euler-Maruyama ap-
proximation of the Wright-Fisher diffusion can be formu-
lated as

X̂iðt þ DtÞ ¼ X̂iðtÞ þ miðX̂ðtÞÞDt þ
X6
j¼1

sijðX̂ðtÞÞDWjðtÞ;

for i = 1,2,3,4, where DWjðtÞ ¼ Wjðt þ DtÞ2WjðtÞ are inde-
pendent and normally distributed with mean 0 and variance
Dt for j = 1,2,. . .,6. The Euler-Maruyama scheme is numeri-
cally stable and strongly consistent (see, e.g., Kloeden and
Platen 1992), and the convergence of the Euler-Maruyama
approximation of the Wright-Fisher diffusion is guaranteed
by Zhang (2006).

Bayesian inference of natural selection

Suppose that the available data are always sampled from the
underlyingpopulationat afinitenumberofdistinct timepoints,
say t1 , t2 , . . . , tK; where the time is measured in units of
2N generations to be consistent with the timescale of the
Wright-Fisher diffusion. At the k-th sampling time point, we
let uk ¼ ðuAk ; uBk Þ and vk ¼ ðvAk ; vBk Þ denote the counts of mu-
tant alleles and ancestral alleles observed at lociA andB in the
sample of nk chromosomes drawn from the underlying popu-
lation, respectively. The population genetic quantities of inter-
est in this work are the scaled selection coefficients aA and aB;
the dominance parameters hA and hB; and the scaled recom-
bination rate r, which are denoted by q ¼ ðaA; hA;aB; hB; rÞ:

Figure 1 Graphical representation of the HMM framework for time se-
ries data of allele frequencies.

sðxÞ ¼

0
BB@

ffiffiffiffiffiffiffiffiffi
x1x2

p ffiffiffiffiffiffiffiffiffi
x1x3

p ffiffiffiffiffiffiffiffiffi
x1x4

p
0 0 0

2
ffiffiffiffiffiffiffiffiffi
x2x1

p
0 0

ffiffiffiffiffiffiffiffiffi
x2x3

p ffiffiffiffiffiffiffiffiffi
x2x4

p
0

0 2
ffiffiffiffiffiffiffiffiffi
x3x1

p
0 2

ffiffiffiffiffiffiffiffiffi
x3x2

p
0

ffiffiffiffiffiffiffiffiffi
x3x4

p
0 0 2

ffiffiffiffiffiffiffiffiffi
x4x1

p
0 2

ffiffiffiffiffiffiffiffiffi
x4x2

p
2

ffiffiffiffiffiffiffiffiffi
x4x3

p

1
CCA; (5)
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Hidden Markov model: Similar to Bollback et al. (2008), the
underlying population is assumed to evolve according to the
two-locus Wright-Fisher diffusion with selection in our HMM
framework, and the observations are modeled as indepen-
dent samples drawn from the underlying population at each
sampling time point (see Figure 1 for the graphical represen-
tation of our HMM framework). To compute the posterior
probability distribution pðq ju1:K ; v1:KÞ; we condition and in-
tegrate over all possible haplotype frequency trajectories of
the underlying population at each sampling time point. More
specifically, we let x1:K ¼ fx1; x2; . . . ; xKg denote the haplo-
type frequency trajectories of the underlying population at
the sampling time points t1:K. The posterior probability dis-
tribution for the population genetic quantities of interest can
then be written down as

pðq ju1:K ; v1:KÞ ¼
Z
VX

⋯
Z
VX

pðq; x1:K ju1:K ; v1:KÞdx1:K ; (6)

where

pðq; x1:K ju1:K ; v1:KÞ} pðqÞpðx1:K jqÞpðu1:K ; v1:K j x1:KÞ:
(7)

In Equation 7, pðqÞ is the prior probability distribution for the
population genetic quantities of interest and can be taken to
be a uniform prior over the parameter space if prior knowl-
edge is poor, pðx1:K jqÞ is the probability distribution for the
haplotype frequency trajectories of the underlying popula-
tion at the sampling time points t1:K, and pðu1:K; v1:K j x1:KÞ
is the conditional probability for the observations at the sam-
pling time points t1:K given the haplotype frequency trajecto-
ries of the underlying population.

Since the Wright-Fisher diffusion is shown to be a Markov
process, the probability distribution for the haplotype fre-
quency trajectories of the underlying population at the sam-
pling time points t1:K can be decomposed as

pðx1:K jqÞ ¼ pðx1 jqÞ
YK21

k¼1

pðxkþ1 j xk;qÞ;

where pðx1 jqÞ is the prior probability distribution for the
haplotype frequencies of the underlying population at the
initial sampling time point and can be taken to be a uniform

prior over the state space VX, known as the flat Dirichlet
distribution, if prior knowledge is poor. The term in the prod-
uct above, pðxkþ1 j xk;qÞ; is the transition probability density
of the Wright-Fisher diffusion between two consecutive sam-
pling time points for k ¼ 1; 2; . . . ;K2 1; which can be
obtained by numerically solving the Kolmogorov backward
equation (or its adjoint) associated with the Wright-Fisher
diffusion. However, this requires a fine enough discretisation
of the state spaceVX, if a finite differencemethod is used, and
strongly depends on the underlying population genetic pa-
rameters (Ragsdale and Gutenkunst 2017). In addition, nu-
merically solving such a PDE in three dimensions for our
posterior computation is computationally challenging and
prohibitively expensive. We therefore resort to an “exact-ap-
proximate” Monte Carlo procedure (Andrieu and Vihola
2016) in this work that only involves simulating the
Wright-Fisher SDE in the form of Equation 4, as a tractable
alternative.

Given the haplotype frequency trajectories of the under-
lyingpopulation, theobservations at each sampling timepoint
are independent of one another, which means that

pðu1:K ; v1:K j x1:KÞ ¼
YK
k¼1

pðuk; vk j xkÞ;

where pðuk; vk j xkÞ is the conditional probability for the ob-
servations at the k-th sampling time point given the haplo-
type frequency trajectories of the underlying population
for k ¼ 1; 2; . . . ;K: To calculate the emission probability
pðuk; vk j xkÞ; we let zk ¼ ðz1;k; z2;k; z3;k; z4;kÞ denote the
counts of the A1B1, A1B2, A2B1, and A2B2 haplotypes in
the sample at the k-th sampling time point, which are usually
unobserved (see Figure 2 for the graphical representation of
our HMM framework incorporating the additional level of
sampling noise). We then have

pðuk; vk j xkÞ ¼
X

zk2VZk

pðzk j xkÞpðuk; vk j zkÞ; (8)

where

VZk ¼
(
zk 2 ℕ4 :

X4
i¼1

zi;k ¼ nk;

uAk # z1;k þ z2;k# nk 2 vAk ; u
B
k # z1;k þ z3;k # nk2 vBk

)
:

Conditional on the haplotype frequency trajectories of the
underlying population at the k-th sampling time point, the
haplotype counts of the sample can be modeled throughmul-
tinomial sampling from the underlying population with sam-
ple size nk. We can then formulate the first term in the
summation of Equation 8 as

pðzk j xkÞ ¼
nk!Q4
i¼1zi;k!

Y4
i¼1

xzi;ki;k : (9)

Figure 2 Graphical representation of the HMM framework for time
series data of allele frequencies incorporating the additional level of
sampling noise caused by the unobserved haplotype counts of the
sample.
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The second term in the summation of Equation 8 can be
decomposed as

pðuk; vk j zkÞ ¼ p
�
uAk ; v

A
k j zk

�
p
�
uBk ; v

B
k j zk

�
: (10)

Let u denote the probability that a sampled chromosome at a
single locus is of unknown type, which we assume to be
identical for all loci. We therefore have

p
�
uAk ; v

A
k j zk

� ¼ b
�
uAk ; z1;k þ z2;k; 12f

�
� b�vAk ; z3;k þ z4;k; 12f

� (11)

p
�
uBk ; v

B
k j zk

� ¼ b
�
uBk ; z1;k þ z3;k; 12f

�
� b�vBk ; z2;k þ z4;k; 12f

�
;

(12)

where

bðx; n; pÞ ¼ n!
x!ðn2 xÞ! p

xð12pÞn2x: (13)

Theprobability that the sampled chromosomeat a single locus
is of unknown type is usually unavailable, butwe can estimate
it with

f̂ ¼ 12

PK
k¼1

�
uAk þ vAk

�þPK
k¼1

�
uBk þ vBk

�
2
PK

k¼1nk
: (14)

Particle marginal Metropolis-Hastings: To compute the
marginal posterior pðq ju1:K; v1:KÞ, we resort to MCMC tech-
niques since the posterior probability distribution in Equation
6 is unavailable in a closed form. AMetropolis-Hastings (MH)
scheme can be devised to explore the population genetic
quantities of interest with a fairly arbitrary proposal proba-
bility distribution, e.g., a random walk proposal, where a
sample of new candidates of the parametersq⋆ is drawn from
the proposal qðq⋆ jqÞ and is accepted with the MH ratio

A ¼ pðq⋆Þ
pðqÞ

pðu1:K ; v1:K jq⋆Þ
pðu1:K ; v1:K jqÞ

qðq jq⋆Þ
qðq⋆ jqÞ: (15)

Our problem reduces to the calculation of the intractable
marginal likelihood pðu1:K; v1:K jqÞ in Equation 15, which
can be formulated as

pðu1:K ; v1:K jqÞ ¼
Z
VX

⋯
Z
VX

pðx1:K jqÞpðu1:K ; v1:K j x1:KÞdx1:K

and achieved with a MC estimate (Beaumont 2003; Andrieu
and Roberts 2009). This pseudomarginal MCMC algorithm
exploits the fact that the MC estimate of the marginal likeli-
hood pðu1:K ; v1:K jqÞ is unbiased (or has a constant bias in-
dependent of the parameters q) and targets the marginal
posterior pðq ju1:K; v1:KÞ:

Weadopt a closely related approach developed by Andrieu
et al. (2010), which obtains an unbiased sequential MC

(SMC) estimate of the marginal likelihood pðu1:K; v1:K jqÞ
and targets the joint posterior pðq; x1:K ju1:K; v1:KÞ: This
method is called PMMH and permits a joint update of the
population genetic quantities of interest and the latent pop-
ulation haplotype frequency trajectories. The coestimation
of the haplotype frequency trajectories of the underlying
population is interesting in its own right, but our interest
here lies only in the population genetic parameters. We
therefore employ a special case of the PMMH algorithm in
this work, where we do not generate and store the haplo-
type frequency trajectories of the underlying population in
the state of the Markov chain. Full details about the PMMH
algorithm can be found in Andrieu et al. (2010). Fearnhead
and Künsch (2018) provided a review of MC methods for
estimating parameters in the HMM based on the particle
filter.

In our Bayesian inference procedure, the implementa-
tion of the PMMH algorithm requires the SMC estimate of
the marginal likelihood pðu1:K; v1:K jqÞ: This can be
achieved by the bootstrap particle filter introduced by
Gordon et al. (1993) in the following manner. For the
sampling time point t1, we first generate a sample of M
particles, denoted by x1:M1 ¼ fx11; x21; . . . ; xM1 g; from the
prior pðx1 jqÞ and assign each particle xm1 a weight given
by

wm
1 ¼ p

�
u1; v1

�� xm1 �
for m ¼ 1; 2; . . . ;M; where the superscript m denotes the
particle label. We then calculate the SMC estimate of the
marginal likelihood for the observations u1 and v1 by

p̂ðu1; v1 jqÞ ¼ 1
M

XM
m¼1

wm
1

and resample M times with replacement from the sample of
particles x1:M1 with the probabilities given by the normalized
weightsw1:M

1 =
PM

m¼1w
m
1 :We repeat the following steps for the

sampling time points t2:K:

Step 1: Generate each particle xmk by simulating the Wright-
Fisher diffusion X(t) on the time interval ½tk21; tk� starting
at the frequency Xðtk21Þ ¼ xmk21 with the Euler-Maruyama
scheme for m ¼ 1; 2; . . . ;M:

Step 2: Assign each particle xmk a weight given by

wm
k ¼ p

�
uk; vk

�� xmk �

for m ¼ 1; 2; . . . ;M:

Step 3: Calculate the SMC estimate of the marginal likelihood
for the observations u1:k and v1:k by

p̂ðu1:k; v1:k jqÞ ¼ p̂ðu1:k21; v1:k21 jqÞ
1
M

XM
m¼1

wm
k :
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Step 4: ResampleM times with replacement from the sample
of particles x1:Mk with the probabilities given by the nor-
malized weights w1:M

1 =
PM

m¼1w
m
1 :

Our Bayesian inference procedure then consists in the
followings. We first generate a sample of initial candidates
of the parameters q from the prior pðqÞ and then run a
bootstrap particle filter with the proposed parameters q

to obtain the SMC estimate of the marginal likelihood
p̂ðu1:K ; v1:K jqÞ: We repeat the following steps until a suffi-
cient number of the samples of the parameters q have been
obtained:

Step 1: Generate a sample of new candidates of the param-
eters q⋆ from the proposal qðq⋆ jqÞ:

Step 2: Run a bootstrap particle filter with the proposed
parameters q⋆ to obtain the SMC estimate of the mar-
ginal likelihood p̂ðu1:K ; v1:K jq⋆Þ:

Step 3: Accept the proposed parameters q⋆ with the Metropolis-
Hastings ratio

A ¼ pðq⋆Þ
pðqÞ

p̂ðu1:K ; v1:K jq⋆Þ
p̂ðu1:K ; v1:K jqÞ

qðq jq⋆Þ
qðq⋆ jqÞ:

Once enough samples of the parameters q have been
obtained, we can get the minimum mean square error
(MMSE) estimates for the population genetic quantities of
interest, defined by

Figure 3 Empirical distributions of the MMSE
estimates for 100 allele frequency datasets
(without missing values) simulated with the
initial population haplotype frequencies x0 ¼
ð0:04; 0:08;0:08;0:8Þ and the dominance pa-
rameters hA ¼ 0:5 and hB ¼ 0:5 for the case
of (A) tightly linked loci with the recombina-
tion rate r = 0.00001 and (B) loosely linked
loci with the recombination rate r = 0.01. The
P value in the bottom left corner indicates the
proportion of the runs where the true values
of the selection coefficients both fall within
their 95% HPD intervals.
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q̂ ¼ E ½q ju1:K ; v1:K � ¼
Z

qpðq ju1:K ; v1:KÞdq:

Alternatively, using nonparametric density estimation tech-
niques (see Izenman, 1991, for a review), we can compute
the posterior pðq ju1:K; v1:KÞ with the samples of the param-
eters q and achieve the maximum a posteriori probability
(MAP) estimates for the population genetic quantities of in-
terest, defined by

q̂ ¼ argmax
q

pðq ju1:K ; v1:KÞ:

Data availability

The authors state that all data necessary for confirming the
conclusions of this work are represented fully within the

article. Source code implementing the approach described
in this work is available at https://github.com/zhangyi-he/
WFM-2L-DiffusApprox-FwdPMMH. Supplemental material
available at figshare: https://doi.org/10.25386/genetics.
12821585.

Results

In this section, we show how our Bayesian inference method
performs on simulated datasets with known population ge-
netic parameter values, including a scenario where sampled
chromosomes contain unknown alleles. We also present two
examples to show the improvement in the inference of natural
selection by explicitly modeling genetic recombination and
local linkage. Finally, we apply our approach to the aDNAdata
associated with horse white spotting patterns from previous

Figure 4 Empirical distributions of the MMSE
estimates for 100 allele frequency datasets
(with 2% missing values) simulated with
the initial population haplotype frequencies
x0 = (0.04, 0.08, 0.08, 0.8) and the domi-
nance parameters hA ¼ 0:5 and hB ¼ 0:5
for the case of (A) tightly linked loci with
the recombination rate r = 0.00001 and
(B) loosely linked loci with the recombination
rate r = 0.01. The P value in the bottom left
corner indicates the proportion of the runs
where the true values of the selection coef-
ficients both fall within their 95% HPD
intervals.
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studies of Ludwig et al. (2009), Pruvost et al. (2011) and
Wutke et al. (2016).

Analysis of simulated data

We run forward-in-time simulations of the two-locus Wright-
Fisher model with selection and evaluate the performance of
our approach on these replicate simulations by examining the
bias and the root mean square error (RMSE) of our Bayesian
estimates. Inwhat follows,we take thedominanceparameters
to be hA ¼ 0:5 and hB ¼ 0:5 (i.e., the heterozygous fitness is
the arithmetic average of the homozygous fitness, called
genic selection) and choose a population size of N ¼ 5000
unless otherwise noted. In principle, however, the conclu-
sions hold for any other values of the dominance parameters
hA; hB 2 ½0; 1� and the population size N 2 ℕ:

For each simulated dataset, given the values of the pop-
ulation genetic parameters q and the initial population hap-
lotype frequencies x0; we simulate the haplotype frequency
trajectories of the underlying population according to the
two-locus Wright-Fisher model with selection. After obtain-
ing the simulated population haplotype frequency trajecto-
ries, we draw the unobserved sample haplotype counts
independently at each sampling time point according to the
multinomial distribution in Equation 9 first, and then we
generate the observed sample mutant allele counts and an-
cestral allele counts with Equations 10–13.

Power to infer natural selection: We vary the selection coeffi-
cients with sA 2 f0:003; 0:01g and sB 2 f0; 0:002; 0:008g;
and the recombination rate with r 2 f0:00001; 0:01g in our

Figure 5 Empirical distributions of the MMSE
estimates for 100 haplotype frequency datasets
simulated with the initial population haplotype
frequencies x0 ¼ ð0:04;0:08;0:08;0:8Þ and
the dominance parameters hA ¼ 0:5 and
hB ¼ 0:5 for the case of (A) tightly linked loci
with the recombination rate r = 0.00001 and
(B) loosely linked loci with the recombination
rate r = 0.01. The P value in the bottom left
corner indicates the proportion of the runs
where the true values of the selection coeffi-
cients both fall within their 95% HPD intervals.
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simulation studies. We perform 100 replicates for each of the
12 possible combinations of the selection coefficients and the
recombination rate. For each replicate, we set the initial pop-
ulation haplotype frequencies x0 ¼ ð0:04; 0:08; 0:08; 0:8Þ
and simulate the haplotype frequency trajectories of the un-
derlying population according to the two-locus Wright-Fisher
model with selection. We sample 50 chromosomes from the
underlying population at every 50 generations throughout
500 generations.

We choose a uniform prior over the interval [21,1] for the
selection coefficients sA and sB; and a flat Dirichlet prior for
the initial population haplotype frequencies x0 in our Bayes-
ian inference method. We divide each generation into five
subintervals in the Euler-Maruyama scheme and run the
PMMH algorithm with 1500 particles and 10,000 iterations.

We discard the initial 2000 iterations as the burn-in period,
and then thin the remaining PMMH output by selecting every
fourth value.

The resultingboxplots of theempirical studies are shown in
Figure 3 for the allele frequency datasets generated without
missing values (f ¼ 0 in Equations 11 and 12) and Figure 4
for the allele frequency datasets generated with missing val-
ues (f ¼ 0:02 in Equations 11 and 12), respectively. In the
two figures, the tips of the whiskers denote the 2.5%-quantile
and the 97.5%-quantile, and the boxes represent the first and
third quartile with the median in the middle. As can be seen
from the boxplot results, our estimates for the selection co-
efficients at both loci show little bias across different param-
eter ranges, no matter whether sampled chromosomes
contain unknown alleles or not, although one can discern a

Figure 6 Empirical distributions of the MMSE
estimates for 100 haplotype frequency data-
sets simulated with the initial population hap-
lotype frequencies x0 ¼ ð0:1; 0:2;0:3;0:4Þ
and the dominance parameters hA ¼ 0:5
and hB ¼ 0:5 for the case of (A) tightly linked
loci with the recombination rate r = 0.00001
and (B) loosely linked loci with the recombi-
nation rate r = 0.01. The P value in the bot-
tom left corner indicates the proportion of the
runs where the true values of the selection
coefficients both fall within their 95% HPD
intervals.
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slight bias for small selection coefficients. With the increase
of the selection coefficients, our estimates for the selection
coefficients become more accurate. See the bias and the
RMSE of the resulting MMSE estimates in Supplemental Ma-
terial, Tables S1 and S2.

For each combination of the selection coefficients and the
recombination rate, we calculate the proportion of the 95%

HPD intervals that include the true values, shown in the
bottom left corner of each boxplot in Figures 3 and 4. On
average, 92.00% of the runs result in the true values of the
selection coefficients being within the 95% HPD intervals
for the simulated datasets without missing values, 93.33%
for tightly linked loci and 90.67% for loosely linked loci. For
simulated datasets with 2% missing values, 92.08% of the

Figure 7 A comparison of the per-
formance differences of the single-
locusmethod and the two-locusmethod
on the simulated dataset of a positively
selected locus tightly linked with a
selectively neutral locus. (A) Sample
mutant allele frequency trajectories.
(B) Posteriors obtained with a single-
locus method. (C) Posteriors obtained
with a two-locus method. (D) Popula-
tion mutant allele frequency trajectories.
(E) Population haplotype frequency
trajectories.
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runs result in the true values of the selection coefficients
being within the 95% HPD intervals, i.e., 93.33% for tightly
linked loci and 90.83% for loosely linked loci. We can see that
small recombination rates can lead to better results for both
loci.

In Figure 5, we illustrate the resulting boxplots of the
empirical studies where the simulated data are given as hap-
lotype frequencies (instead of allele frequencies in Figures 3
and 4). Compared to the estimates from allele frequency
data, our estimates from haplotype frequency data are closer
to their true values with smaller variances, especially for
tightly linked loci. On average, 92.50% of the runs result in
the true values of the selection coefficients being within their
95% HPD intervals on average, with 93.67% for tightly
linked loci and 91.33% for loosely linked loci. The bias and
the RMSE of the resulting MMSE estimates are summarized
in Table S3. This improvement in the performance of our
estimates is to be expected as all else being equal haplotype
frequency data contain more information than allele fre-
quency data. The complex interplay between the four haplo-
types in the sample can be directly observed in haplotype
frequency data but only partially observed in allele frequency
data.

However, as illustrated in Figure 5, our estimates are still
slightly biased for small selection coefficients. This may be
caused by the initial population frequencies of the haplotypes
that contain mutant alleles being close to 0 in our simulated
data. In such a situation, the population frequency trajecto-
ries of these haplotypes will be, with high probability, near
0 during the sampling period for small selection coefficients
(see Figures S1 and S2). This can cause a number of simu-
lated datasets to have sample counts 0 for the haplotypes that
contain mutant alleles, especially when the selection coeffi-
cients are small. Such datasets contain little information on
the underlying selection coefficients. As can be observed from
Figure 6, the bias can be almost completely eliminated for all
combinations of the selection coefficients and the recombi-
nation rate if the starting population frequencies of the
haplotypes that contain mutant alleles are taken to be inter-
mediate values like x0 ¼ ð0:1; 0:2; 0:3; 0:4Þ: The bias and the
RMSE of the resulting MMSE estimates are summarized in
Table S4. The haplotype frequency trajectories of the un-
derlying population for the haplotype frequency datasets

simulated with the initial population haplotype frequencies
x0 ¼ ð0:1; 0:2; 0:3; 0:4Þ can be found in Figures S3 and S4.
We also assess the performance of our method for the case
that a new mutation arose in the population (at frequency
1=ð2NÞ) at t = 0 when the neighboring mutation became
established. See Figure S5 and Table S5 for boxplots of the
resulting MMSE estimates with their bias and RMSE, which
show that our approach can still produce precise estimates of
the selection coefficients in this case. It should be noticed that
in this case we condition the mutant alleles at both loci to
survive until the most recent sampling time point and sample
50 chromosomes from the underlying population at every
120 generations throughout 1200 generations so that a sig-
nificant number of the realizations of the haplotype fre-
quency trajectories of the underlying population can capture
a significant proportion of the selective sweep.

In summary, our Bayesian inference procedure can deliver
accurate estimates of the selection coefficients based on time
series data of allele frequencies across different parameter
ranges, regardless of whether sampled chromosomes contain
unknown alleles or not. We also generate datasets with other
selection schemes, e.g., the dominance parameters hA ¼ 0
and hB ¼ 1: The resulting boxplots of the simulation studies
are shown in Figure S6, with the bias and the RMSE of the
resulting MMSE estimates summarized in Table S6. In addi-
tion toMMSE estimates, we present the bias and the RMSE of
MAP estimates (see Tables S7–S12), which display very sim-
ilar characteristics to the MMSE estimates. The boxplots for
MAP estimates show little bias, with the upper and lower
quartiles of the MAP estimates being similar to those of the
MMSE estimates (see Figures S7–S12).

Improvement from modeling genetic recombination and
local linkage: In the case where a pair of loci are both
suspected to be subject to natural selection, one can still
use a single-locus method to each locus to estimate selection
coefficient. To our knowledge, there has been a considerable
amountofworkon the statistical inferenceofnatural selection
at a single locus from time series data of allele frequencies
(e.g., Bollback et al., 2008; Malaspinas et al., 2012;
Steinrücken et al. 2014; Schraiber et al. 2016; Ferrer-
Admetlla et al. 2016; He et al. 2019). However, using a sin-
gle-locus approach may lead to inaccurate estimates of the

Table 1 A comparison of the Bayesian estimates obtained by using the single-locus method and the two-locus
method from the simulated dataset of a positively selected locus tightly linked with a selectively neutral locus

Single-locus method Two-locus method

Selection coefficient sA MAP (31022) 1.160 0.989
MMSE (31022) 1.127 1.148

95% HPD (31022) [0.722,1.566] [0.652,1.630]
Selection coefficient sB MAP (31022) 0.465 0.214

MMSE (31022) 0.496 0.253
95% HPD (31022) [0.080,0.916] [20.495,1.123]
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selection coefficients when the two loci are linked (He et al.
2020). In the case of tightly linked loci, modeling genetic
recombination and local linkage becomes necessary, thus
our two-locus method is far more desirable. Below, we illus-
trate with two examples of tightly linked loci with the re-
combination rate r = 0.00001. We simulate the haplotype
frequency trajectories of the underlying population through

the two-locus Wright-Fisher model with selection and draw
200 chromosomes from the underlying population at gener-
ations 0, 100, 200, 300, 400, and 500.

In the first example, we consider a positively selected locus
A tightly linked with a selectively neutral locus B, where we
set the selection coefficients sA ¼ 0:01 and sB ¼ 0; respec-
tively. We take the initial haplotype frequencies of the

Figure 8 A comparison of the per-
formance differences of the single-
locus method and the two-locus method
on the simulated dataset of a pair of
positively selected and tightly linked
loci. (A) Sample mutant allele frequency
trajectories. (B) Posteriors obtained with
a single-locus method. (C) Posteriors
obtained with a two-locus method.
(D) Population mutant allele frequency
trajectories. (E) Population haplotype
frequency trajectories.
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underlying population to be x0 ¼ ð0:2; 0:1; 0:3; 0:4Þ: Themu-
tant allele frequency trajectories of the sample are shown in
Figure 7A. The posterior probability distributions obtained
through our single-locus approach, described in File S3, are
shown in Figure 7B, and the posterior probability distribu-
tions achieved with our two-locus method, described in
Bayesian inference of natural selection, are shown in Figure
7C. Bayesian estimates of the selection coefficients sA and sB
are summarized in Table 1.

One can observe that with a single-locus method, the
estimate for the selection coefficient sA is reasonably accu-
rate, but the estimate for the selection coefficient sB is off by a
large amount. The true value for the selection coefficient sB is
0, but the single-locus approach produces an estimate of
roughly 0.005 and a 95% HPD interval that only encom-
passes positive values, which is strong evidence for the pres-
ence of positive selection. In comparison, the estimates for
both of the selection coefficients sA and sB are fairly accurate
with the two-locus method.

To understand the poor performance of the single-locus
method in this example, we plot the mutant allele frequency
trajectories of the underlying population in Figure 7D and the
haplotype frequency trajectories of the underlying popula-
tion in Figure 7E. The increase in the frequency of the B1

allele with time, despite it having a selection coefficient of
0, is caused by the A1B1 haplotype, which has a selection
coefficient of 0.01. This compensates for the decrease in the
frequency of the A2B1 haplotype, resulting in an increasing
trajectory for the B1 allele, albeit with a slower rate of in-
crease than theA1 allele. With the two-locus approach, how-
ever, the interplay between all four haplotypes are taken into
account and it produces accurate estimates for both of the
selection coefficients sA and sB:

In the second example, we consider two positively selected
and tightly linked loci A and B; where we take the selection
coefficients to be sA ¼ 0:01 and sB ¼ 0:005; respectively, and
set the initial haplotype frequencies of the underlying popu-
lation to be x0 ¼ ð0:05; 0:05; 0:7; 0:2Þ: The results are illus-
trated in Figure 8 and summarized in Table 2. In this
example, with the single-locus method, the estimate for the
selection coefficient sA is reasonably accurate, but the esti-
mate for the selection coefficient sB is off by a large amount,
i.e., its true value lies outside the 95% HPD interval. In fact,

although the B1 allele is favored by natural selection with a
selection coefficient of 0.005, the resulting estimate for the
selection coefficient sB is roughly 20.0015 with a 95% HPD
interval that includes the value 0, which implies no strong
evidence for natural selection. In comparison, the two-locus
method again produces fairly accurate estimates for both of
the selection coefficients sA and sB:

As shown in Figure 8, the frequency of the A1 allele in-
creases with time due to the increase in the frequencies of the
A1B1 andA1B2 haplotypes, which are the two most selected
haplotypes, with the selection coefficients of 0.015 and 0.01,
respectively. The B1 allele is made up of the A1B1 and A2B1

haplotypes, with the selection coefficients of 0.01 and 0.005,
respectively, which are the second and third most selected
haplotypes. As a result of their initial conditions and selection
coefficients, the frequency of the B1 allele roughly holds con-
stant in time, since it is somewhat out-competed by the A1

allele. Viewing the trajectory of the B1 allele in isolation does
not give strong evidence that it is selectively advantageous,
which results in an estimate of roughly 0 in its selection co-
efficient through the single-locus approach. Moreover, even
the 95% HPD interval for the single-locus method does not
include the true selection coefficient of 0.005 for the B1 al-
lele. Using the two-locus approach, we are again able to ob-
tain accurate estimates for both of the selection coefficients
sA and sB:

In these two examples, we choose a uniform prior over the
interval [21,1] for the selection coefficients, and we select a
flat Dirichlet prior for the initial population haplotype fre-
quencies in the two-locus method and a uniform prior over
the interval [0,1] for the initial population allele frequency in
the single-locus method, respectively. Other settings in the
Euler-Maruyama scheme and the PMMH algorithm are the
same as we applied in the empirical studies in Power to infer
natural selection. Compared to existing single-locus ap-
proaches, our two-locus method explicitly incorporates the
effect of genetic recombination and the information of local
linkage through the two-locus Wright-Fisher diffusion with
selection. Indeed, the dynamics of the two-locus Wright-
Fisher diffusion with selection can demonstrate complex
and unpredictable behavior (see, e.g., Yu and Etheridge
2010; Cuthbertson et al. 2012), which can result in inaccu-
rate estimates of the selection coefficients if one simply

Table 2 A comparison of the Bayesian estimates obtained by using the single-locus method and the two-locus
method from the simulated dataset of a pair of positively selected and tightly linked loci

Single-locus method Two-locus method

Selection coefficient sA MAP (31022) 0.811 0.879
MMSE (31022) 0.789 0.966

95% HPD (31022) [0.338,1.290] [0.412,1.673]
Selection coefficient sB MAP (31022) 20.176 0.219

MMSE (31022) 20.148 0.267
95% HPD (31022) [20.560,0.271] [20.433,0.958]
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employs a single-locus approach. In contrast, applying our
two-locus method can yield precise estimates of the selection
coefficients at both loci.

Analysis of real data

We apply our Bayesian inference method to real data by
reanalyzing time serial samples of segregating alleles of
the equine homolog of proto-oncogene c-kit (KIT). These
data come from previous studies of Ludwig et al. (2009),
Pruvost et al. (2011) andWutke et al. (2016), and the sample
information and genotyping results for all successfully typed
horses can be found in Wutke et al. (2016), which are sum-
marized in Table 3. TheKIT gene in horses resides on the long
arm of chromosome 3 and lies in two intervals associated
with white spotting patterns, one in the intron 13, which
codes for tobiano (KIT13), with the other in intron 16, which
codes for sabino (KIT16). At the KIT13 locus, the ancestral
allele is designated KM0, while the mutant allele, associated
with the tobiano pattern and acting as dominant (Brooks
et al. 2007), is designated KM1. The tobiano pattern is char-
acterized by depigmented patches of skin and associated hair
that often cross the dorsal midline and cover the legs. At the
KIT16 locus, the ancestral allele is designated sb1, while the
mutant allele associatedwith the sabino pattern and acting as
semidominant (Brooks and Bailey 2005), is designated SB1.
The sabino pattern is characterized by irregularly bordered
white patches of skin and associated hair that begin at the
extremities and face, and may extend up to the belly and
midsection.

We set the dominance parameters h = 0 for KIT13 as the
KM1 allele is dominant, and h = 0.5 for KIT16 as the SB1
allele is semidominant. Following Der Sarkissian et al.
(2015), we take the population size to be N = 16,000 and
the average length of a generation of horse to be 8 years, the
same as in Schraiber et al. (2016). As can be seen in Table 3,
there are various sampling time points when the sequencing
of the aDNAmaterial yielded a number of unknown alleles at
loci KIT13 and/or KIT16. We show all possible mutant allele
frequency trajectories of the sample at the KIT13 and KIT16
loci in Figure 9. Neither mutant allele was found in the first

two samples dated 17,146 and 7029 years before present
(BP). Indeed, both sabino and tobiano patterns are only pre-
sent in domestic horses (Wutke et al. 2016). We assume that
both mutant alleles, KM1 and SB1, arose after the domesti-
cation of the horse, which is thought to have started in the
Eurasian Steppes �5500 years BP (Outram et al. 2009). We
therefore discard the first two samples from our analysis in
this section, but, for completeness, in Figures S13–S18, we
also present the results of the inference when these two sam-
ples are taken into account.

As a result of the low quality of the KIT dataset, it becomes
difficult to intuit whether either or both mutant alleles at the
KIT13 and KIT16 loci are selected by simply inspecting the
mutant allele frequency trajectories of the sample. Using
our two-locus Bayesian inference procedure, described in
Bayesian inference of natural selection, we jointly estimate
the selection coefficients for the mutant alleles at the KIT13
and KIT16 loci under the case that sampled chromosomes
contain variants with unknown alleles. For the recombina-
tion rate, we choose three average rates of recombination,
5 3 1029, 1 3 1028, and 5 3 1028 crossovers/bp, as sug-
gested in Dumont and Payseur (2008), and multiply them by
the genetic distance 4688 bp to get the recombination rates
between the KIT13 and KIT16 loci. All settings in the Euler-
Maruyama scheme and the PMMH algorithm are the same as
we applied in the previous section. The resulting posterior
probability distributions are shown in Figure 10, and theMAP
and MMSE estimates, as well as the 95% HPD intervals, are
summarized in Table 4.

As can be found in Table 4, the MMSE estimates with
different values of the recombination rate are essentially un-
changed, while the MAP estimates vary a bit more than the
MMSE estimates. This may be caused by the way we achieve
our MAP estimates, where the posterior probability distribu-
tion is approximated through the two-dimensional kernel
density estimation with an axis-aligned bivariate normal ker-
nel (Venables and Ripley 2002). Therefore, the MAP esti-
mates may depend on the number of the iterations of the
PMMH. The resulting Bayesian estimates of the selection co-
efficients suggest that the KM1 allele at the KIT13 locus is
weakly positively selected, whereas the SB1 allele at the
KIT16 locus is strongly negatively selected, but the 95%
HPD intervals for both selection coefficients include the value
0. For the KIT13 locus, the posterior probability for positive
selection is 0.564, not strong evidence for the KM1 allele at
the KIT13 locus being positively selected. However, for the
KIT16 locus, the posterior probability for negative selection is
0.982, strong evidence to support the SB1 allele at the KIT16
locus being negatively selected. This conclusion is further
confirmed with the estimates obtained with different values
of the population size (i.e., N = 8000 and N = 32,000),
which can be found in Figures S19 and S20.

We also used our single-locus Bayesian inference proce-
dure, described in File S3, to independently estimate the
selection coefficients for the mutant alleles at the KIT13
and KIT16 loci under the case that sampled chromosomes

Table 3 Time serial ancient horse samples of segregating alleles at
the KIT13 and KIT16 loci. The unit of the sampling time is the year
before present (BP)

Sample time Sample size
KIT13 KIT16

KM0/KM1 sb1/SB1

17,146 22 22/0 22/0
7029 14 14/0 14/0
5472 48 45/3 44/2
4442 24 24/0 24/0
3916 28 28/0 28/0
3352 56 53/3 52/4
2624 30 26/4 24/0
2330 14 11/3 12/0
1134 100 77/3 86/0
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contain unknown alleles. All settings in the Euler-Maruyama
scheme and the PMMH algorithm are the same as we applied
in the previous section. The resulting posterior probability
distributions are shown in Figure 11, and theMAP andMMSE
estimates, as well as the 95% HPD intervals, are summarized
in Table 5. The resulting Bayesian estimates of the selection
coefficients suggest that the KM1 allele at the KIT13 locus is
weakly selectively advantageous, whereas the SB1 allele at
the KIT16 locus is weakly selectively deleterious. However, as
illustrated in Figure 5, the posterior probability distributions
for the KIT13 and KIT16 loci are both roughly symmetric
about 0. This indicates that there is no evidence to support
the KM1 allele at the KIT13 locus or the SB1 allele at the
KIT16 locus being selected, which is consistent with the find-
ings of Ludwig et al. (2009) obtained using the approach of
Bollback et al. (2008). Compared to the results shown in
Figure 10 and Table 4, we fail to tease apart negative selec-
tion at the KIT16 locus without considering genetic recombi-
nation effect and local linkage information. We present an
example that mimics the KIT13 and KIT16 loci, i.e., a nega-
tively selected locus tightly linked with a selectively neutral
locus, which shows similar results to those using the real
dataset (see Figure S21 and Table S13).

Computational issues

In the PMMH algorithm, it is desirable to generate a large
number of particles in the bootstrap particle filter to yield an
accurate estimate of the marginal likelihood pðu1:K ; v1:K jqÞ:
However, this can be computational burdensome since each
iteration of the PMMH algorithm requires a run of the boot-
strap particle filter even though fewer iterations are required.
Balancing the particle number and the MCMC iteration num-
ber to obtain good performance at a reasonable computa-
tional cost was investigated by Pitt et al. (2012) and Doucet
et al. (2015). In pseudomarginal algorithms, if the estimates
of the marginal likelihood are too noisy, the chain tends to be
“sticky” with excessive autocorrelation (Beaumont 2003). A
simple rule-of-thumb is to select a particle number such that

the standard deviation (SD) of the log-likelihood estimates is
in the range from 1.0 to 1.7. Nevertheless, the PMMH algo-
rithm exactly targets the marginal posterior pðq ju1:K; v1:KÞ
for any number of particles.

In each run of the bootstrap particle filter, we simulate the
particles according to the two-locus Wright-Fisher diffusion
with selection using the Euler-Maruyama scheme. It is desir-
able to take a large L in the Euler-Maruyama scheme to get an
accurate approximation of the Wright-Fisher diffusion, but
large L increases the computational load. Stramer and
Bognar (2011) suggested choosing L to be L* such that the
estimates of the marginal likelihood are approximately the
same for any L . L*, where L* can be obtained through ex-
tensive simulations.

Inpractice,wedivideeachgeneration intofive subintervals
in the Euler-Maruyama scheme, i.e., L = 5.Our running time
for a single iteration of the PMMH algorithm with 1500 par-
ticles (see Figure 12), achieving the SD of the log-likelihood
at �1.504, on a single core of an Intel Core i7 processor at
4.2 GHz, is �12.360 sec for the KIT dataset. In principle,
every particle can be simulated in parallel on a different core.
Running 10,000 iterations of the PMMH is sufficient for a
relatively smooth resulting posterior surface, as shown in
Figure 10. We discard the initial 2000 iterations as the bur-
n-in period and then thin the remaining PMMH output, tak-
ing every fourth value and regarding these as independent.
Dahlin and Schön (2015) outlined a selected number of pos-
sible improvements and best practices for implementation.
All of our code in this work is written in R with C++ by using
Rcpp and RcppArmadillo.

Exact-approximateparticlefilteringapproaches suchas the
PMMHalgorithmweuse in this work seem to be useful for the
inference of population genetic parameters from time series
data of allele frequencies. This methodology can be general-
ized to a range of complex evolutionary scenarios, e.g., non-
constant demographic histories. Although computationally
demanding, improvements to the PMMH algorithm continue
to be developed (e.g., Yıldırım et al. 2018).

Figure 9 Potential changes in the
mutant allele frequencies of the
sample over time at loci (A) KIT13
and (B) KIT16. Ancient horse sam-
ples were taken at generations
22144,2879,2684,2556,2490,
2419, 2328, 2292, and 2142.
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Discussion

In this work, we have developed a novel MCMC-based ap-
proach to jointly estimate natural selection at two linked loci
from time series genetic data while explicitly accounting for
genetic recombination and local linkage. Our Bayesian in-
ferenceprocedure isbuiltonanHMMframework incorporating

the two-locus Wright-Fisher diffusion with selection. Our
Bayesian estimates of selection coefficients are achieved with
thePMMHalgorithm.Wehavedemonstrated thatourmethod
can accurately and efficiently estimate selection coefficients
from simulated data, regardless of whether sampled chromo-
somes contain unknown alleles or not. We have found that,

Figure 10 Posterior probability distri-
butions for KIT13 and KIT16 obtained
by using the two-locus method from
the samples dated from 5472 years
BP (the third sampling time point)
with the population size of 16,000
and the average rate of recombina-
tion (A) 5 3 1029 crossovers/bp, (B)
1 3 1028 crossovers/bp, and (C)
5 3 1028 crossovers/bp.
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under certain circumstances, especially in the case of tightly
linked loci, existing single-locus approaches fail to deliver
precise estimates for selection coefficients, but our two-locus
method still works well. We have applied our Bayesian in-
ference procedure to theKIT gene in horses, which is involved
in the formation of white spotting patterns.

As noted earlier, the ancient horse DNA dataset has been
the subject of earlier analyses by Malaspinas et al. (2012),
Steinrücken et al. (2014), Schraiber et al. (2016), and He
et al. (2019). Compared with many datasets describing ex-
perimental evolution under controlled laboratory or field
mesocosm conditions, aDNA datasets are more likely to be
composed of short degraded DNA fragments, typically with a
high degree of genotyping error (Racimo et al. 2016). How-
ever, aDNA data provide an opportunity to investigate the
chronology and tempo of natural selection across evolution-
ary timescales, which has the advantage of being associated
with an interesting narrative (MacHugh et al. 2017). A mo-
tivation for the analysis is to see whether the statistical de-
velopments described here can shed further light on these
data. We have found strong evidence showing that the sabino
pattern caused by the SB1 allele at locus KIT16 has been
selectively deleterious, but no evidence showing that the
tobiano pattern caused by the KM1 allele at locus KIT13

has been selectively advantageous. One explanation for our
findings may be that there was a decreasing attractiveness of
spotted horses since the Middle Ages due to religious and
cultural ideas (Wutke et al. 2016). Based on ancient Roman
records, solid horses were preferred to spotted horses as the
latter were considered to be of inferior quality. During medi-
eval times, spotted horses had a negative connotation after
several epidemics, resulting in a lower religious prestige for
these patterns. Additionally, people might no longer see the
need to distinguish wild (solid) horses from domesticated
(spotted) horses as wild populations gradually became
scarcer and approached extinction. Further reasons for the
spotted horses being selectively deleterious might have been
novel developments in weaponry such as the longbow, with
these horses being an easier target than solid ones (see
Wutke et al. 2016, and references therein).

In addition to ourmethod, Terhorst et al. (2015) is the only
existing approach that can model linked loci and genetic drift
for the inference of natural selection from temporal changes
in allele frequencies. In Terhorst et al. (2015), the underlying
population dynamics at multiple linked loci was modeled
using the Wright-Fisher model in their HMM framework,
and the likelihood computation was carried out by approxi-
mating theWright-Fisher model through a deterministic path

Table 4 MAP and MMSE estimates, as well as the 95% HPD intervals, for KIT13 and KIT16 obtained by using the two-
locus method from the samples dated from 5472 years BP (the third sampling time point) with the population size of
16,000

Recombination rate MAP (3 1022) MMSE (3 1022) 95% HPD (3 1022)

KIT13 0.234 3 1024 0.079 0.056 [20.268,0.476]
0.469 3 1024 20.021 0.037 [20.292,0.451]
2.340 3 1024 0.036 0.040 [20.283,0.447]

KIT16 0.234 3 1024 21.238 21.175 [22.316,0.250]
0.469 3 1024 21.076 21.187 [22.407,0.007]
2.340 3 1024 21.001 21.152 [22.283,0.002]

Figure 11 Posterior probability
distributions for (A) KIT13 and
(B) KIT16 obtained by using the
single-locus method from the sam-
ples dated from 5472 years BP
(the third sampling time point) with
the population size of 16,000.
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with added Gaussian noises, which aims to fit a mathemati-
cally convenient transition probability density function by
equating the first two moments of the Wright-Fisher model.
Such a moment-based approximation works well for many
applications when modeling the allele frequencies with in-
termediate values. However, as soon as the allele frequencies
get close to their boundaries 0 or 1 (i.e., allele loss or fixa-
tion), the Wright-Fisher model will be poorly approximated
due to the infinite support of the Gaussian distribution that
will leak probability mass into the values of the allele fre-
quency that are ,0 or .1, which is not mathematically pos-
sible. This issue becomes more problematic in the inference
of natural selection since natural selection is expected to rap-
idly drive the allele frequencies toward the boundaries.

TheMCMC-basedmethod we have developed in this work
is built on the standard diffusion limit of the Wright-Fisher
model of the stochastic evolutionary dynamics under natural
selection at a pair of linked loci, which is shown to be a good
approximation even if the allele frequencies get close to their
boundaries 0 or 1 (He et al. 2020). The diffusion approxima-
tion enables our approach to work well for the allele frequen-
cies with all possible values. Our method can handle sampled
chromosomes that contain unknown alleles, which onemight
expect to encounter in real data, especially in aDNA studies.
Even though we have only illustrated the utility of our
method on aDNA data in this work, our Bayesian inference
procedure can also be used to analyze Pool-Seq time series
data from E&R experiments, as in Terhorst et al. (2015).
Given the PMMH algorithmwe used to infer natural selection
in this work, our method lends itself naturally to joint esti-
mates of the haplotype frequency trajectories of the underly-
ing population without any increase in computational
complexity. Furthermore, our method can be readily ex-
tended to model a range of complex evolutionary scenarios,
e.g., time-varying population size and selection coefficients,
as it is built on simulating the Wright-Fisher diffusion.

One limitation of our approach is that we assume that
mutant alleles were created before the initial sampling time
point. Once a sample contains at least one copy of the mutant
allele, we can reasonably assume that the mutant allele arose
before the time of that sample. However, in the case of earlier
samples without any mutant allele, there is uncertainty in
pinpointingwhen themutantallele arose.Thisproblemcanbe
remedied by coestimating the allele age as in e.g., Malaspinas
et al. (2012), Schraiber et al. (2016) and He et al. (2019), but
these works all investigate natural selection at a single locus.

Jointly estimating the selection coefficients at linked loci
along with the allele ages can be expected to be cumbersome
as there aremany cases to take into account. In the case of the
ancient horse DNA data, we did not wish tomake the assump-
tion that the mutant alleles, KM1 and SB1, arose earlier than
the time that horses were domesticated. However, we can
compare the inference results obtained with different choices
of the initial sampling time point (see Tables S14–S16) and
reach the same conclusion that there is no strong evidence for
the KM1 allele at locus KIT13 to be positively selected, but
there is strong evidence for the SB1 allele at locus KIT16 to be
negatively selected.

Our Bayesian statistical framework lends itself to being
extended to infer natural selection atmultiple linked loci from
time series data of allele frequencies, which might further
improve the inference results of natural selection. The chal-
lenge is that, with the increase in the number of linked loci,
modeling the underlying population dynamics subject to
natural selection becomes increasingly difficult. For example,
there are eight haplotypes to take into account in the case of
three linked loci each with two alleles. As a tractable alter-
native, we can apply our approach to multiple linked loci in a
pairwise manner by using the PMMH algorithm within the
Gibbs sampler, but this might only work for a small number of
linked loci due to the computational cost of our two-locus
approach. In practice, it will be necessary to find a good
approximation of the Wright-Fisher model for the method
to be computationally feasible, which will be the topic of
future investigation. An important consideration is to what
degree the results of the inference of natural selection are
affected by the choice of stochastic or deterministic dynamics
for the allele frequency trajectories (Jewett et al. 2016), and
whether, in many scenarios, approximation with a determin-
istic model is satisfactory.
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